14 research outputs found

    Hyperedge bundling : A practical solution to spurious interactions in MEG/EEG source connectivity analyses

    Get PDF
    Inter-areal functional connectivity (FC), neuronal synchronization in particular, is thought to constitute a key systems-level mechanism for coordination of neuronal processing and communication between brain regions. Evidence to support this hypothesis has been gained largely using invasive electrophysiological approaches. In humans, neuronal activity can be non-invasively recorded only with magneto-and electroencephalography (MEG/EEG), which have been used to assess FC networks with high temporal resolution and whole-scalp coverage. However, even in source-reconstructed MEG/EEG data, signal mixing, or "source leakage", is a significant confounder for FC analyses and network localization. Signal mixing leads to two distinct kinds of false-positive observations: artificial interactions (AI) caused directly by mixing and spurious interactions (SI) arising indirectly from the spread of signals from true interacting sources to nearby false loci. To date, several interaction metrics have been developed to solve the AI problem, but the SI problem has remained largely intractable in MEG/EEG all-to-all source connectivity studies. Here, we advance a novel approach for correcting SIs in FC analyses using source-reconstructed MEG/EEG data. Our approach is to bundle observed FC connections into hyperedges by their adjacency in signal mixing. Using realistic simulations, we show here that bundling yields hyperedges with good separability of true positives and little loss in the true positive rate. Hyperedge bundling thus significantly decreases graph noise by minimizing the false-positive to true-positive ratio. Finally, we demonstrate the advantage of edge bundling in the visualization of large-scale cortical networks with real MEG data. We propose that hypergraphs yielded by bundling represent well the set of true cortical interactions that are detectable and dissociable in MEG/EEG connectivity analysis.Peer reviewe

    Action in Perception : Prominent Visuo-Motor Functional Symmetry in Musicians during Music Listening

    Get PDF
    Musical training leads to sensory and motor neuroplastic changes in the human brain. Motivated by findings on enlarged corpus callosum in musicians and asymmetric somatomotor representation in string players, we investigated the relationship between musical training, callosal anatomy, and interhemispheric functional symmetry during music listening. Functional symmetry was increased in musicians compared to nonmusicians, and in keyboardists compared to string players. This increased functional symmetry was prominent in visual and motor brain networks. Callosal size did not significantly differ between groups except for the posterior callosum in musicians compared to nonmusicians. We conclude that the distinctive postural and kinematic symmetry in instrument playing cross-modally shapes information processing in sensory-motor cortical areas during music listening. This cross-modal plasticity suggests that motor training affects music perception.Peer reviewe

    EEGManyPipelines: A Large-scale, Grassroots Multi-analyst Study of Electroencephalography Analysis Practices in the Wild

    Get PDF
    The ongoing reproducibility crisis in psychology and cognitive neuroscience has sparked increasing calls to re-evaluate and reshape scientific culture and practices. Heeding those calls, we have recently launched the EEGManyPipelines project as a means to assess the robustness of EEG research in naturalistic conditions and experiment with an alternative model of conducting scientific research. One hundred sixty-eight analyst teams, encompassing 396 individual researchers from 37 countries, independently analyzed the same unpublished, representative EEG data set to test the same set of predefined hypotheses and then provided their analysis pipelines and reported outcomes. Here, we lay out how large-scale scientific projects can be set up in a grassroots, community-driven manner without a central organizing laboratory. We explain our recruitment strategy, our guidance for analysts, the eventual outputs of this project, and how it might have a lasting impact on the field

    Influence of multiple hypothesis testing on reproducibility in neuroimaging research: a simulation study and Python-based software

    Get PDF
    BACKGROUND: Reproducibility of research findings has been recently questioned in many fields of science, including psychology and neurosciences. One factor influencing reproducibility is the simultaneous testing of multiple hypotheses, which entails false positive findings unless the analyzed p-values are carefully corrected. While this multiple testing problem is well known and studied, it continues to be both a theoretical and practical problem. NEW METHOD: Here we assess reproducibility in simulated experiments in the context of multiple testing. We consider methods that control either the family-wise error rate (FWER) or false discovery rate (FDR), including techniques based on random field theory (RFT), cluster-mass based permutation testing, and adaptive FDR. Several classical methods are also considered. The performance of these methods is investigated under two different models. RESULTS: We found that permutation testing is the most powerful method among the considered approaches to multiple testing, and that grouping hypotheses based on prior knowledge can improve power. We also found that emphasizing primary and follow-up studies equally produced most reproducible outcomes. COMPARISON WITH EXISTING METHOD(S): We have extended the use of two-group and separate-classes models for analyzing reproducibility and provide a new open-source software "MultiPy" for multiple hypothesis testing. CONCLUSIONS: Our simulations suggest that performing strict corrections for multiple testing is not sufficient to improve reproducibility of neuroimaging experiments. The methods are freely available as a Python toolkit "MultiPy" and we aim this study to help in improving statistical data analysis practices and to assist in conducting power and reproducibility analyses for new experiments

    Hyperedge bundling: data, source code, and precautions to modeling-accuracy bias to synchrony estimates

    Get PDF
    It has not been well documented that MEG/EEG functional connectivity graphs estimated with zero-lag-free interaction metrics are severely confounded by a multitude of spurious interactions (SI), i.e., the false-positive “ghosts” of true interactions [1,2]. These SI are caused by the multivariate linear mixing between sources, and thus they pose a severe challenge to the validity of connectivity analysis. Due to the complex nature of signal mixing and the SI problem, there is a need to intuitively demonstrate how the SI are discovered and how they can be attenuated using a novel approach that we termed hyperedge bundling. Here we provide a dataset with software with which the readers can perform simulations in order to better understand the theory and the solution to SI. We include the supplementary material of [1] that is not directly relevant to the hyperedge bundling per se but reflects important properties of the MEG source model and the functional connectivity graphs. For example, the gyri of dorsal-lateral cortices are the most accurately modeled areas; the sulci of inferior temporal, frontal and the insula have the least modeling accuracy. Importantly, we found the interaction estimates are heavily biased by the modeling accuracy between regions, which means the estimates cannot be straightforwardly interpreted as the coupling between brain regions. This raise a red flag that the conventional method of thresholding graphs by estimate values is rather suboptimal: because the measured topology of the graph reflects the geometric property of source-model instead of the cortical interactions under investigation.Peer reviewe

    Neuroanatomical substrate of noise sensitivity

    No full text
    Recent functional studies suggest that noise sensitivity, a trait describing attitudes towards noise and predicting noise annoyance, is associated with altered processing in the central auditory system. In the present work, we examined whether noise sensitivity could be related to the structural anatomy of auditory and limbic brain areas. Anatomical MR brain images of 80 subjects were parcellated with FreeSurfer to measure grey matter volume, cortical thickness, cortical area and folding index of anatomical structures in the temporal lobe and insular cortex. The grey matter volume of amygdala and hippocampus was measured as well. According to our findings, noise sensitivity is associated with the grey matter volume in the selected structures. Among those, we propose and discuss particular areas, previously linked to auditory perceptual, emotional and interoceptive processing, in which larger grey matter volume seems to be related to higher noise sensitivity.peerReviewe

    Key issues in decomposing fMRI during naturalistic and continuous music experience with independent component analysis

    No full text
    Background Independent component analysis (ICA) has been often used to decompose fMRI data mostly for the resting-state, block and event-related designs due to its outstanding advantage. For fMRI data during free-listening experiences, only a few exploratory studies applied ICA. New method For processing the fMRI data elicited by 512-s modern tango, a FFT based band-pass filter was used to further pre-process the fMRI data to remove sources of no interest and noise. Then, a fast model order selection method was applied to estimate the number of sources. Next, both individual ICA and group ICA were performed. Subsequently, ICA components whose temporal courses were significantly correlated with musical features were selected. Finally, for individual ICA, common components across majority of participants were found by diffusion map and spectral clustering. Results The extracted spatial maps (by the new ICA approach) common across most participants evidenced slightly right-lateralized activity within and surrounding the auditory cortices. Meanwhile, they were found associated with the musical features. Comparison with existing method(s) Compared with the conventional ICA approach, more participants were found to have the common spatial maps extracted by the new ICA approach. Conventional model order selection methods underestimated the true number of sources in the conventionally pre-processed fMRI data for the individual ICA. Conclusions Pre-processing the fMRI data by using a reasonable band-pass digital filter can greatly benefit the following model order selection and ICA with fMRI data by naturalistic paradigms. Diffusion map and spectral clustering are straightforward tools to find common ICA spatial maps.peerReviewe

    Symmetry maps showing significantly greater functional symmetry for keyboard players compared to string players (top figure) and for string players compared to keyboard players (bottom figure).

    No full text
    <p>See legend of <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0138238#pone.0138238.g001" target="_blank">Fig 1</a> for further details. Abbreviations: MOG = middle occipital gyrus, CUN = cuneus, PCUN = Precuneus, SOG, superior occipital gyrus, FFG = fusiform gyrus, SPG = superior parietal gyrus, PostCG = postcentral gyrus, PCL = paracentral lobule, PUT = putamen, CAU = caudate nucleus, MFG = middle frontal gyrus, ORBmid = orbitofrontal cortex (middle frontal gyrus), SFG = superior frontal gyrus, ORBsup = orbitofrontal cortex (superior frontal gyrus).</p

    Symmetry maps showing significantly greater functional symmetry for musicians compared to nonmusicians.

    No full text
    <p>Top of figure: Orthogonal planes (lateral, frontal, transversal) showing significant clusters (voxelwise thresholded at <i>p</i> < 0.01 [z = 2.32]; cluster-wise corrected at <i>p</i> < 0.001). Bottom of figure: Coronal slices showing the continuous Z-map for the respective comparison. Abbreviations: PostCG = postcentral gyrus, PCL = paracentral lobule, PreCG = precentral gyrus, PCUN = precuneus, FFG = fusiform gyrus, ITG = inferior temporal gyrus, TPOmid = temporal pole (middle temporal gyrus), ORBinf = orbitofrontal cortex (inferior frontal gyrus), TPOsup = temporal pole (superior temporal gyrus), CAL = calcarine fissure and surrounding cortex, DCG = median cingulate and paracingulate gyrus.</p
    corecore